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b CRCT/CERFACS, 42 A6. G. Coriolis, 31057 Toulouse Cedex, France

c CRCT/IMFT, A6. C. Soula, 31400 Toulouse Cedex, France

SUMMARY

In this paper, the development of a fourth- (respectively third-) order compact scheme for the
approximation of first (respectively second) derivatives on non-uniform meshes is studied. A full inclusion
of metrics in the coefficients of the compact scheme is proposed, instead of methods using Jacobian
transformation.

In the second part, an analysis of the numerical scheme is presented. A numerical analysis of
truncation errors, a Fourier analysis completed by stability calculations in terms of both semi- and fully
discrete eigenvalue problems are presented. In those eigenvalue problems, the pure convection equation
for the first derivative, and the pure diffusion equation for the second derivative are considered.

The last part of this paper is dedicated to an application of the numerical method to the simulation of
a compressible flow requiring variable mesh size: the direct numerical simulation of compressible
turbulent channel flow. Present results are compared with both experimental and other numerical (DNS)
data in the literature. The effects of compressibility and acoustic waves on the turbulent flow structure
are discussed. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: compact scheme/compact differencing; non-uniform meshes; finite difference; compressible; turbulent
channel flow

1. INTRODUCTION

Direct numerical simulations (DNS) have become one of the major tools to study and model
turbulent flows [1–7]. Even though these techniques demonstrated high accuracy in many
flows, their application has been often limited to simple geometries (cubes), using simplified
Navier–Stokes equations (incompressible flows), low Reynolds numbers and high-order
numerical techniques (spectral methods). Extending DNS to more complex flows, more
complex physics or higher Reynolds numbers, requires further improvements of DNS tools.
The ‘high Reynolds’ objective is of course the central point in large-eddy simulations (LES)
techniques, which are beyond the focus of this paper. It is clear, however, that LES raise
specific difficulties in terms of numerical methods [8–10], but they will also have to be
performed using compressible formulations in many cases.
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The objectives of this paper are the following:

� To develop a high-order compact finite difference method able to handle variable grid sizes.
Compact schemes on regular meshes have been used extensively as a substitute for spectral
techniques [3,4,11], but their extension to irregular meshes, e.g. to study near-wall turbu-
lence, is not straightforward. It will be discussed here in terms of theory, linear stability,
analysis and precision. Two methods to perform derivative computations on variable grids
will be presented and discussed.

� To perform a direct numerical simulation of a channel flow using a fully compressible code.
The channel flow is one of the best documented test cases to validate a DNS or a LES code.
However, computing this flow with a compressible code requires the proper handling of
acoustic waves. For channel flow geometries, acoustic waves are trapped in the computa-
tional box and may interact in complex ways with the turbulent flow, making the present
test difficult to use. It will be shown that, for usual DNS conditions, the second acoustic
transverse mode is excited by turbulence, but that it has a negligible effect on turbulence
statistics.

2. COMPACT SCHEME ON STRETCHED GRIDS

2.1. Compact scheme on uniform meshes

Lele [11] recently proposed a generalization of the classical Padé schemes. The schemes
discussed in [11] represent a family of high-order finite difference compact schemes, which
can be used not only for the evaluation of derivatives, but also for filtering and interpola-
tion applications. Algorithms based on such schemes can provide numerical solutions with
spectral-like resolution and very low numerical dissipation.

Consider a one-dimensional mesh with node co-ordinates xi, where 15 i5N is the node
index, and a function with given values fi= f(xi) at the nodes. In this paragraph, a uniform
mesh with equal nodes spacings h=xi−xi−1 will first be considered. A sixth-order tridiag-
onal approximation f %i of the first derivative (df/dx)(xi)

can then be obtained, with (see
scheme 2.1.7 of [11]):

1
3

f %i−1+ f %i+
1
3

f %i+1=
14
9

fi+1− fi−1

2h
+

1
9

fi+2− fi−2

4h
. (2.1)

Similarly, a sixth-order tridiagonal approximation f ¦i of the second derivative (d2f/dx2)(xi)
is

given by (see scheme 2.2.7 of [11]):

2
11

f ¦i−1+ f ¦i +
2

11
f ¦i+1=

12
11

fi+1−2fi+ fi−1

h2 +
3
11

fi+2−2fi+ fi−2

4h2 . (2.2)

For non-periodic boundary problems, non-centered boundary schemes are required at
points close to the boundaries, i.e. at nodes 1, 2, N−1 and N. Classical fourth-order Padé
schemes and third-order compact relations can be used respectively, at nodes 2 and N−1
and at nodes 1 and N [11] for both derivatives. In practice, the boundary formulation at
nodes 1 and 2 for the first derivative is given by:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)



NUMERICAL SIMULATIONS OF COMPRESSIBLE FLOWS 161
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f %3=
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4h
(f3− f1)

(2.3)

with similar relations at nodes N−1 and N ; while the boundary formulation for the second
derivative is taken under the form:

i=1,

i=2,

f ¦1+11f ¦2=
1
h2 (13f1−27f2+15f3− f4)

1
10

f ¦1+ f ¦2+
1

10
f ¦3=

6
5h2 (f3−2f2+ f1)

(2.4)

with similar relations at nodes N−1 and N.

2.2. Compact scheme on non-uniform meshes

Two formal methods can be used to generalize the application of the former compact finite
difference scheme to non-uniform meshes. In a first approach, a Jacobian transformation (JT)
can be applied, by defining transformed co-ordinates. Even though this method is used in most

Figure 1. Comparison between the JT and FIM methods, on the first and second spatial derivatives errors of a cosine
function.
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Figure 2. Norms of the truncation errors as a function of the number of nodes for three different meshes.

codes using curvilinear co-ordinates for steady flows, it is not a common choice for unsteady
flows or for DNS (see Moin et al. [4]). A second technique called fully integrated metrics
(FIM) consists of computing the derivatives directly on the irregular mesh. Below, it will be
seen that the Jacobian transformation can lead to large errors in the case of non-smoothly
varying mesh spacings. As a matter of fact, the accuracy of the numerical approximation can
be maintained in the general case only for finite difference schemes that take into account the
stretching of the grid.

2.2.1. Jacobian transformation. An extension of finite difference methods originally designed
on uniform meshes can be obtained with the following simple relations:

df
dx

=
df/dj

dx/dj
,

d2f
dx2=

d2f
dj

−
df
dx

d2x
dj2�dx

dj

�2 . (2.5)

This formulation involves defining the mesh transformation j=j(x). Each of the derivatives
on the right-hand side of Equation (2.5) can be evaluated using the finite difference scheme of
Section 2.1. The essential assumption of this method is that the mesh must be sufficiently
smooth so that dx/dj and d2x/dj2 can be defined, and, in practice, calculated without
appreciable loss in the overall accuracy.

2.2.2. Fully included metrics. An other method to treat non-uniform meshes is to directly
include the metrics in the coefficients of the compact derivatives matrices. In this case, the
compact schemes originally designed for uniform meshes must be adapted. The main con-
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straint imposed is that the obtained scheme for non-uniform meshes must reduce exactly to the
scheme for uniform meshes (presented in Section 2.1), in the case of a uniformly spaced grid.

2.2.2.1. First deri6ati6e approximation. For an irregular mesh, the approximation to the first
derivative may be rewritten in a more general way:

ai f %i−1+ f %i+bi f %i+1=Ai fi+1+Bi fi−1+Ci fi+2+Di fi−2+Ei fi, (2.6)

where the coefficients ai, bi, Ai, Bi, Ci, Di and Ei are functions of the non-uniform mesh
spacings hk=xk−xk−1. Following Lele [11], relations between the former coefficients can be
derived by matching the Taylor series of various orders. The truncation error of the resulting
scheme is determined by the first unmatched coefficient in the Taylor series. Here, the
following relations are obtained:

Ai+Bi+Ci+Di+Ei=0 (order 0)

hi+1Ai−hi Bi+ (hi+2+hi+1)Ci− (hi+hi−1)Di=1+ai+bi (order 1)

hi+1
2 Ai+hi

2Bi+ (hi+2+hi+1)2Ci+ (hi+hi−1)2Di=
2!
1!

(hi+1bi−hiai) (order 2)

hi+1
3 Ai−hi

3Bi+ (hi+2+hi+1)3Ci− (hi+hi−1)3Di=
3!
2!

(hi+1
2 bi+hi

2ai) (order 3)

hi+1
4 Ai+hi

4Bi+ (hi+2+hi+1)4Ci+ (hi+hi−1)4Di=
4!
3!

(hi+1
3 bi−hi

3ai) (order 4) (2.7)

hi+1
5 Ai−hi

5Bi+ (hi+2+hi+1)5Ci− (hi+hi−1)5Di=
5!
4!

(hi+1
4 bi+hi

4ai) (order 5)

hi+1
6 Ai+hi

6Bi+ (hi+2+hi+1)6Ci+ (hi+hi−1)6Di=
6!
5!

(hi+1
5 bi−hi

5ai) (order 6)

It was decided to limit this paper to a forth-order scheme1. The solution is then given in terms
of a linear system of the first five equations in (2.7), where Ai, Bi, Ci, Di and Ei are the

Figure 3. Modified wavenumber vs. wavenumber for the first derivative approximation. Plot shows real and
imaginary part of w % for three different meshes: r=1, uniform grid; r=0.6, increasingly fine grid; r=1.67,

increasingly coarse grid.

1 The precise characteristics of the scheme with highest formal accuracy (i.e. sixth-order) that can be obtained with
Equations (2.7) are not addressed in this paper.
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Figure 4. Phase speed vs. wavenumber for the first derivative approximation.

unknowns. This leads to the general expressions shown in Appendix A. In these expressions,
the right-hand side parameters ai and bi are considered constants, equal to their value for
uniform meshes, i.e. ai=bi=1/3. Thus, the final scheme for the first derivative will reduce
exactly to the scheme in Section 2.1, in the case of a uniformly spaced grid. For sufficiently
smooth grids, this scheme can gain up to two orders of accuracy. For grids where the spacing
does not vary smoothly, fourth-order accuracy will still be obtained. The leading truncation
error term can formally be written as:

e1=
�

hi+1
5 Ai−hi

5Bi+ (hi+2+hi+1)5Ci− (hi+hi−1)5Di−
5!
4!

(hi+1
4 bi+hi

4ai)
n f i

(5)

5!
(2.8)

and is of the order O(hi
4).

For non-periodic boundaries, Equation (2.6) can no longer be applied to points close to the
boundary, so that boundary schemes at nodes 1, 2, N−1 and N are required. The first
derivative at boundary point i=1 is calculated from:

f %1+af %2=Af1+Bf2+Cf3. (2.9)

This relation can formally be third-order. A solution in terms of a, A, B and C is shown in
Appendix B. At boundary point i=2, the first derivative is obtained from the relation:

af %1+ f %2+bf %3=Af1+Bf2+Cf3. (2.10)

This relation can formally be fourth-order. The solution coefficients are shown in Appendix B.

2.2.2.2. Second deri6ati6e approximation. Similarly, the approximation to the second derivative
is rewritten under the form:

ai f ¦i−1+ f ¦i +bi f ¦i+1=Ai fi+1+Bi fi−1+Ci fi+2+Di fi−2+Ei fi. (2.11)

Matching the Taylor series coefficients, the second set of unknowns ai, bi, Ai, Bi, Ci, Di and Ei

is the solution of the system:

Ai+Bi+Ci+Di+Ei=0 (order −1)

hi+1Ai−hi Bi+ (hi+2+hi+1)Ci− (hi+hi−1)Di=0 (order 0)

hi+1
2 Ai+hi

2Bi+ (hi+2+hi+1)2Ci+ (hi+hi−1)2Di=
2!
0!

(1+ai+bi) (order 1)
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hi+1
3 Ai−hi

3Bi+ (hi+2+hi+1)3Ci− (hi+hi−1)3Di=
3!
1!

(hi+1bi−hiai) (order 2)

hi+1
4 Ai+hi

4Bi+ (hi+2+hi+1)4Ci+ (hi+hi−1)4Di=
4!
2!

(hi+1
2 bi+hi

2ai) (order 3)
(2.12)

hi+1
5 Ai−hi
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5!
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(hi+1
3 bi−hi

3ai) (order 4)
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4!

(hi+1
4 bi+hi
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Here, it was decided to limit this paper to a third-order scheme. The general solution shown
in Appendix A is given in terms of a linear system of the five first equations in (2.12), where
Ai, Bi, Ci, Di and Ei are the unknowns. As in the first derivative case, the parameters ai and
bi are considered constants, equal to their value for uniform meshes, i.e. ai=bi=2/11. The
final scheme for the second derivative will reduce exactly to the scheme given by Equation
(2.2), for uniformly spaced grids. The leading truncation error term for the second derivative
approximation can formally be written as:

e2=
�

hi+1
5 Ai−hi

5Bi+ (hi+2+hi+1)5Ci− (hi+hi−1)5Di−
5!
3!

(hi+1
3 bi−hi

3ai)
n f i

(5)

5!
(2.13)

and is of order O(hi
3).

For non-periodic boundaries, Equation (2.11) is no longer valid at nodes 1, 2, N−1 and N.
The second derivative at boundary point i=1 is then calculated from:

f ¦1+af ¦2=Af1+Bf2+Cf3+Df4. (2.14)

If a is considered a parameter, this relation can formally be second-order. Solutions for A, B,
C, D are shown in Appendix B. At boundary point i=2, the second derivative is obtained
from the relation:

af ¦1+ f ¦2+bf ¦3=Af1+Bf2+Cf3+Df4. (2.15)

Figure 5. Modified wavenumber vs. wavenumber for the second derivative approximation. Plot shows real and
imaginary part of w¦ for three different meshes: r=1, uniform grid; r=0.6, increasingly fine grid; r=1.67,

increasingly coarse grid.
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Figure 6. Characteristics of non-uniform grids used in semi- and fully-discrete eigenvalues problems.

If a and b are considered parameters, this relation can formally be second-order. Solutions for
A, B, C, D are shown in Appendix B.

2.2.3. Preliminary result. In a first approach, a simple comparison is made between the JT
method using transformed co-ordinates, and the FIM method with inclusion of metrics in the
compact matrix. As already stated, the FIM method might produce less error than the JT
method in the case of non-smoothly varying meshes.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)
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As an example of a non-smoothly varying mesh, a 70-points one-dimensional periodic
non-uniform mesh of random type is chosen, on a domain of size Lx=2p, with node
co-ordinates given by:

xi= (i−1+Czrnd)h (2.16)

zrnd, with −15zrnd51, are random numbers and C is a constant taken as C=0.3; h is the
equal mesh spacing obtained for C=0. For this particular mesh, the maximum theoretical
stretching factor between two successive cells is (1+2C)/(1−2C), and takes the value of 4.0.
This mesh clearly does not satisfy regularity conditions required for the JT method. However,
it is representative of grids which will have to be used for DNS or LES of complex geometries,
where the mesh can become (especially in 3D) quite irregular.

The first and second derivatives of a known periodic cosine function f=cos(v0x+f0) are
calculated using both methods on the previous domain (chosen here as v0=4 and f0=1).
Errors between the analytical and numerical derivatives, (e= f (k)− f (k)analytical are calculated
over the 1D domain. The errors are normalized by v0

k, with k=1 (respectively k=2) for the
first (respectively second) derivative, and are shown in Figure 1. In Figure 1, the FIM method
errors are multiplied by a scaling factor of 100. Much larger errors are obtained with the JT
method.

As a conclusion, in the case of a non-sufficiently smooth mesh, the classical JT method using
transformed co-ordinates can lead to larger errors. So in general, the JT method should be
used very carefully and obviously eliminated in cases like the one shown here. In the following,
only the FIM method will be studied.

2.3. Analysis of the resolution characteristics

In this section, the general characteristics of the compact scheme with fully included metrics
for non-uniform meshes are described.

2.3.1. Truncation errors and order. The formal leading truncation error terms for the first (e1)
and second derivative (e2) approximations are given by Equations (2.8) and (2.13) respectively,
showing that the compact scheme with fully included metrics is formally fourth- and third-or-
der respectively.

Figure 7. Eigenvalue spectrum for the semi-discrete case in a periodic domain, considering the constant speed
advection problem (spatial first derivative).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)
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Figure 8. Eigenvalue spectrum for the semi-discrete case in a non-periodic domain, considering the constant speed
advection problem (spatial first derivative).

Numerical calculations of the truncation errors of the derivatives can also provide a good
estimate of the order of the scheme. The idea consists of calculating the numerical first and
second derivatives of an analytical function with known derivatives. The chosen function is a
cosine function (the same as in Section 2.2.3) over a periodic domain of length Lx=2p. Then
the norms (see Equation (2.17) below) of the error ek between the analytical and numerical
derivatives can be estimated. The following notations will be used:

ek�= max
15 i5N

�f i
(k)− f i

(k)analytical�,

ekL1
=

1
N

%
N

i=1

�f i
(k)− f i

(k)analytical�. (2.17)

Numerical tests were conducted on three different types of meshes, on a periodic domain of
length Lx=2p : a uniform mesh, a random mesh (see Equation (2.16)), and a smoothly varying
mesh based on hyperbolic functions defined by:

xi=
Lx

2
[1+C tanh(Khi)]

with

and

K=Argtanh
�1

C
�

,

−15h i=2
i−1
N−1

−15+1.
(2.18)

The constants in the random and hyperbolic tangent meshes definitions are respectively, 0.3
and 1.05.

The ek� and ekL1
norms of the calculated truncation errors as a function of the number

of nodes for three different meshes are shown in Figure 2. Thus, it is verified that a sixth-order
scheme is recovered in the case of a uniform mesh. As expected, a fourth-order scheme on f %
(third on f %%) is found in the general case (random mesh). However, in the case of a smoothly
varying mesh, the general expected orders are improved. In the tanh mesh example of Figure
2, the scheme is of sixth-order (respectively fourth-order) for the first (respectively second)
derivative. The raise at high N on some error curves of Figure 2 is due to numerical machine
precision, and can be highly machine-dependent.
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2.3.2. Fourier analysis of error. Additional information about the behavior of numerical
schemes can be obtained with Fourier analysis (see Lele [11], Vitchenevsky and Bowles [12] and
Cain and Bush [13] for stretched grids).

Consider a Fourier mode in space:

f(x)=ejwx, (2.19)

where j=
−1. The exact first derivative of this function with respect to x is (f/(x= jwf. If
df/dx represents the numerical approximation of the first derivative of f using the FIM
method, the ‘modified wave number’ w %(w) can be defined by:

df
dx

= jw %f= jw % ejwx. (2.20)

Exact differentiation corresponds to w %(w)=w. The difference between w %(w) and w is then a
measure of error in the first derivative approximation.

If the second derivative scheme is considered, the exact second derivative of f will be
(2f/(x2= −w2f, while the numerical approximation of the second derivative can be written in
the form:

d2f
dx2= −w¦f. (2.21)

The difference between w¦(w) and w2 is a measure of error in the second derivative
approximation.

2.3.2.1. Fourier analysis for the first deri6ati6e. The effects of grid non-uniformity are examined
by considering a simple stretched grid given by:

xi=xi−1+D r i−2. (2.22)

Application of the former equation to the FIM method gives:

w %i= − j
Ai ejwhi+1+Bi e− jwhi+Ci ejw(hi+1+hi+2)+Di e− jw(hi−1+hi )+Ei

1+ai e− jwhi+bi ejwhi+1
, (2.23)

where the coefficients ai=bi=1/3, Ai, Bi, Ci, Di and Ei are solutions of (2.7). Replacing
hi=xi−xi−1=D r i−2, and the coefficients by their respective values (see Appendix A) in the
former equation, produces w %i(w) (not shown here).

Figure 3 shows the real and imaginary parts of w %(w)D plotted against wD for the FIM
method and for three distinct mesh cases: r=1, uniform grid; r=0.6, increasingly fine grid;
r=1.67, increasingly coarse grid. It is to be noted that wD=p corresponds to the 2-d wave,
with two points per wavelength. From Figure 3, it can be seen that the real part of w %(w)
follows the exact differentiation (curve g) over a decreasing range of wavenumbers as r
increases. In the uniform mesh case, w %(w) is purely real, and the results presented in figure 2
of [11] are recovered. In the r=0.6 case, I(w %(w)) is negative. On the other hand, I(w %(w)) is
positive over a portion of the wavenumber domain for r=1.67. From the observation that
I(w %(w))\0, it is however, erroneous to conclude that the semi-discretized scheme is unstable.
Stability considerations are studied in the next section using eigenvalues analysis.

If the constant speed advection equation is considered (see Equation (2.25) in the next
section), it can be shown that (see Vitchenevsky and Bowles [12]) the phase speed of a wave
of wavenumber w is given by c*/c=R(w %)/w. Figure 4 shows phase speed information for the
first derivative. From this figure, it can be observed that the waves will propagate too slowly

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)
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Figure 9. Eigenvalue spectrum for the semi-discrete case in a periodic domain, considering the pure diffusion problem
(spatial second derivative).

for some values of wD, and slightly too fast for some other values (in the cases of r=0.6 and
r=1.67).

2.3.2.2. Fourier analysis for the second deri6ati6e. For the second derivative, the modified
wavenumber can be written:

w¦i = − j
Ai ejwhi+1+Bi e− jwhi+Ci ejw(hi+1+hi+2)+Di e− jw(hi−1+hi )+Ei

1+ai e− jwhi+bi ejwhi+1
, (2.24)

where the coefficients ai=bi=2/11, Ai, Bi, Ci, Di and Ei are solutions of (2.12).
Figure 5 shows the real and imaginary parts of w¦(w)D plotted against wD for the FIM

method and for the same mesh cases as in the first derivative case. R(w¦(w)) follows the exact
differentiation (curve g) over a decreasing range of wavenumbers as r increases. However, a
slight difference is noticeable between the R(w¦(w)) curves at r=1 and r=0.6. The same
conclusions as in the first derivative case hold for positiveness of I(w¦(w)).

2.3.3. Numerical analysis of stability. In this section, the general theory of the eigenvalue
analysis of the complete semi-discretized or fully-discretized differencing scheme is firstly
recalled. This type of analysis is then applied to the FIM method.

Figure 10. Eigenvalue spectrum for the semi-discrete case in a non-periodic domain, considering the pure diffusion
problem (spatial second derivative).
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Figure 11. Eigenvalue spectrum for the fully-discrete case in a periodic domain, considering the constant speed
advection problem (spatial first derivative and RK3 time advancement). Plots in the complex plane show also the unit

circle.

2.3.3.1. Semi-discrete and fully-discrete eigen6alue problems for the first deri6ati6e. Consider the
constant speed advection equation:

(f
(t

+c
(f
(x

=0, (2.25)

over a one-dimensional periodic domain of length 2p, in the general case of a non-uniform
mesh. The latter equation is to be completed by an initial value for the function, i.e. f(x,t=0).
No particular boundary conditions are required on a periodic domain.

The spatial first derivative compact schemes for either uniform or non-uniform meshes can
be formally written in a general matrix form, as:

Af. %=Bf. , (2.26)

where A and B are N×N square matrices, f. = ( fi)15 i5N and f. %= (f %i )15 i5N are N×1 vectors
representing the function and its derivative at the nodes.

Multiplying the advection equation (2.25) by A gives:

A
(f.
(t

+cBf. =0. (2.27)

At this point, the time discretization problem has not been yet addressed, and the semi-discrete
problem is considered (exact time advancement). Since the former set of equations is a linear
system of ODEs in time (see Lele [11]), it is consistent to look for solutions in terms of normal
modes, i.e. f. =exp(vt) f0 . The system then reduces to the following eigenvalue problem:

−
vhmin

c
Af0 =hmin Bf0 , (2.28)

where hmin=min15 i5N hi. A semi-discrete stability analysis can be obtained by analysing the
eigenvalues, which are written under the reduced form v %=vhmin/c. These eigenvalues are
generally complex. For the numerical stability of the semi-discrete problem, these eigenvalues
must lie in the left half of the complex plane.
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To consider the full discretization scheme, time advancement must be addressed. In this
paper, a third-order explicit Runge–Kutta method was chosen to advance the solution in time.
The Runge–Kutta method may be written in the following manner for linear differential
equations (see Vitchenevsky and Bowles [12]):

f. n+1= %
M

k=0

(Dt ·A)k

k !
f. n M=3 for RK3, (2.29)

where f. n= (f i
n)15 i5N is the N×1 vector of the variable at time n, and A is the global spatial

differentiation operator. Here, A=A−1B, so that the final discretization for a RK3 time
integration scheme may be written in the form:

f. n+1= %
3

k=0

(l ·A−1Bhmin)k

k !
f. n=Kf. n, (2.30)

where l=cDt/hmin is the CFL number. Now, a stability analysis can be obtained by
calculating the eigenvalues of the iteration matrix K. For the numerical stability of the
fully-discrete problem, these eigenvalues must lie inside the unit circle in the complex plane.

2.3.3.2. Semi-discrete and fully-discrete eigen6alue problems for the second deri6ati6e. Similar
relations can be established for the second spatial derivative by considering the pure diffusion
equation on a periodic domain:

(f
(t

=n
(2f
(x2. (2.31)

The second derivative compact scheme can be written as Af. ¦=Bf. , so that it follows:

A
(f.
(t

=nBf. . (2.32)

This paper also looks for solutions in the form f. =exp(vt)f0 and the resulting eigenvalue
problem is:

vhmin
2

6
Af0 =hmin

2 Bf0 . (2.33)

Eigenvalues (written as v %=vh2
min/n) must lie in the left half of the complex plane for stability.

For the fully-discrete problem, with a RK3 time advancement scheme, the resulting
eigenvalue problem reduces to

f. n+1= %
3

k=0

(Fo ·A−1Bhmin
2 )k

k !
f. n=Kf. n, (2.34)

where Fo=nDt/hmin
2 is the Fourier number, and K represents the iteration matrix for the pure

diffusion equation. In this second derivative case, it can be shown that both semi- and
fully-discrete eigenvalues are real.

2.3.3.3. Non-periodic problems. If Equations (2.25) and (2.31) are considered over a non-peri-
odic domain [0, 2p ], boundary conditions are to be supplied.

For the convection equation (2.25), and if c\0, a physical boundary condition at x=0 has
to be prescribed in the form f(x=0, t)=g(t). Following Lele [11], and for stability analysis,
there is only a slight loss of generality in assuming that g(t)=0. For the diffusion equation
(2.31), f(x=0, t)=0 and f(x=Lx, t)=0 will be imposed.
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In a non-periodic case, numerical boundary schemes for the compact scheme must be used
on points close to the frontier. Boundary schemes presented in Section 2.2.2 are then used
instead of the interior scheme. Moreover, in the numerical implementation of the above
eigenvalue problems in the non-periodic case, the approximation of derivatives at boundary
points is replaced by the imposed physical boundary condition.

2.3.3.4. Application to the FIM method. As an example, a 70-points 1D non-uniform mesh on
a domain of size Lx=2p was chosen. An infinite variety of meshes could be used. As an
example, uniform, piecewise geometric, cosine-based and random meshes will be considered in
this section. The piecewise geometric mesh is a simple stretched grid in which each successive
cell differs from the previous one by a factor r on the first half of the domain, and by a factor
1/r on the other half. The grid characteristics are shown in Figure 6(a), for r=1.3. The
cosine-based mesh is constructed with trigonometric functions according to:

xi=
Lx

2
�

1+hi+
C−1

p
sin(p(hi+1))

n
with −15hi=2

i−1
N−1

−15+1 (2.35)

in a periodic case. A smoothly varying mesh is obtained by choosing C=0.7 (see Figure 6(b)).
In practice, non-smooth grids with abrupt grid cell changes are only relevant in non-periodic
problems. Also considered is the case of a random mesh (given by Equation (2.16) with a
coefficient C=0.4). This would be an example of the most severe case of non-smooth meshes
that could be encountered in DNS or LES. Random grid characteristics are shown in Figure
6(c).

Figure 12. Eigenvalue spectrum for the fully-discrete case in a non-periodic domain, considering the constant speed
advection problem (spatial first derivative and RK3 time advancement).
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Figure 13. Eigenvalue spectrum for the fully-discrete case in a periodic domain, considering the pure diffusion
problem (spatial second derivative and RK3 time advancement).

Calculated eigenvalues for the semi-discrete problem are shown in Figures 7 and 8 in the
case of the pure convection equation (first derivative). In the periodic case, eigenvalues are
purely imaginary. Their numerically calculated real part (using Matlab software) is of the order
of machine precision, which can be seen on the left of Figure 7. In the non-periodic case,
eigenvalues are complex. All eigenvalues lie in the left half of the complex plane.

Figure 14. Eigenvalue spectrum for the fully-discrete case in a non-periodic domain, considering the pure diffusion
problem (spatial second derivative and RK3 time advancement).
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Figure 15. Geometry of the channel flow computational domain.

Eigenvalues for the semi-discrete problem for the diffusion equation (involving spatial
second derivative) are plotted in Figures 9 and 10. Eigenvalues are real-valued for the diffusion
equation case. The scheme also exhibits stable behavior for the semi-discrete case (eigenvalues
with negative real part).

Figures 11 and 12 show the calculated eigenvalues for the fully-discrete problem (discretiza-
tion in space and time) at different CFL numbers (where CFL=cDt/hmin), and for the
convection equation. CFLmax:0.8708 is the stability limit obtained by Lele [11] in the case of
a uniform mesh. In Figures 11 and 12, the eigenvalues are plotted in the complex plane for
different types of meshes. All eigenvalues for CFL numbers less than CFLmax lie inside the unit
circle. In the non-uniform mesh cases, the CFL condition applies only at the smallest mesh
spacing location, and is in fact a more restrictive condition. This could explain why, in a highly
non-uniform mesh case (e.g. piecewise geometric or random in non-periodic cases), the scheme
remains stable at CFL numbers as high as 1.

Figures 13 and 14 show the calculated eigenvalues in the diffusion equation case, for the
fully-discrete problem (discretization in space and time), at different Fo. Fomax:0.3645 is the

Figure 16. Mean streamwise velocity profile plotted in wall unit co-ordinates. Solid line shows present DNS results,
and D symbols experimental data from Wei and Willmarth [17] at Rec=2970. The dashed line through the data is the

‘law-of-the-wall’ plot compiled by Coles [21,22] for a zero-pressure–gradient boundary layer.
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Figure 17. RMS velocity fluctuation normalized by the friction velocity. Top: in global co-ordinates; bottom: in wall
co-ordinates. Open symbols represent experimental data from WW, solid symbols represent numerical data from
KMM. Lines represent the current DNS results. — — and �, u rms

+ ; – – – and �, 6 rms
+ ; –-– and 
, w rms

+ . (Wei and
Willmarth did not measure wrms).

Fourier number stability limit discussed in Lele [11]. In these last figures, the calculated
eigenvalues are real-valued. The periodic and non-periodic cases are similar and show a stable
behavior.

In all cases, the FIM method exhibits no unstable eigenvalues for both semi- and fully-dis-
crete problems, as long as stability criteria derived for regular meshes are fulfilled.

3. APPLICATION TO DIRECT NUMERICAL SIMULATIONS

This section shows an application of the FIM method to the simulation of a compressible flow
requiring variable mesh size: the time-dependent turbulent flow in a periodic channel.

3.1. Compressible flow equations

The compressible turbulent flow of an ideal gas is governed by the full time-dependent
Navier–Stokes equations (continuity, momentum and energy), written here in a conservative
form:
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Figure 18. Mean shear stress profiles in global co-ordinates. � symbols represent WW turbulent shear stress
experimental data.
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Figure 19. Distribution of ō+ in wall co-ordinates. Symbols (�) represent the numerical data of KMM.
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Figure 20. Kolmogorov microscale in wall units. Symbols (�) represent the numerical data of KMM.

where the viscous stress tij is defined by:

tij=m
�(ui

(xj

+
(uj

(xi

−
2
3

dij

(uk

(xk

�
. (3.2)

The heat flux qj along xj is related to temperature T by the Fourier law:

qj= −k
(T
(xj

. (3.3)

The summation convention applies to repeated indices. Here r, p, u, 6, w, et denote
respectively, the density, pressure, fluid velocity components in the x-, y- and z-directions, and
total energy per unit mass. The system must be supplemented with the definition of the total
energy and the equation of state:

ret=
p

(g−1)
+

1
2

r(u2+62+w2) (3.4)

and

p=rRT, (3.5)

where R=R/M=287.15 J kg−1 K−1. R is the perfect gas constant and M is the molecular
weight of the ideal gas.

The Reynolds number Rec=Uch/n is introduced based on the centerline velocity Uc in the
channel and on the channel half-width h. The Prandtl number is defined as Pr=mCp/k, where
k is the thermal conductivity and Cp the specific heat at constant pressure.

The Prandtl and Reynolds numbers, and the ratio of specific heats g=Cp/C6 are supposed
constant. The dynamic and kinematic viscosities m and n are also supposed constant.

Finally, it should be noted that a skew-symmetric form of the non-linear terms in the
Navier–Stokes equations is used to reduce aliasing errors (see Kravchenko and Moin [9] for
more details).
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3.2. Numerical conditions

In this section, a DNS of a turbulent periodic channel flow is described. Figure 15 shows a
sketch of the computational geometry and of the co-ordinate system. Isothermal wall condi-
tions are used at the top and bottom boundaries, while periodic boundary conditions are used
in the streamwise (x) and spanwise (z) directions. Many experimental studies of developed
turbulent channel flow can be found (Laufer [14], Comte-Bellot [15], Clark [16], Wei and
Willmarth [17]). Many numerical studies concerning incompressible channel flow can also be
found in the literature (Rai and Moin [4], Kim et al. [7], Moin and Kim [18], Antonia et al.
[19]). Fewer studies are found for DNS of channel flows using a compressible formulation. In
this paper, the aim is only to check the consistency of the results with other experimental/nu-
merical studies, and to perform this simulation with a fully compressible code.

The channel half-width h is taken as the reference length. A computational domain of size
Lx=2ph, Ly=2h and Lz=0.908h in the three directions, is used. The x-, y- and z-co-ordi-
nates belong to the intervals 05x5Lx, −Ly/25y5Ly/2 and 05z5Lz. According to
Jimenez and Moin [20], a ‘minimal channel flow’ configuration can be computed to save CPU
running time. They showed that for boxes wider than :100 wall units (see below) in the
spanwise direction, the flow is turbulent and the low-order turbulence statistics are in good
agreement with experiments. Similar results hold for the streamwise direction. The dimensions
of the present calculation domain were chosen to respect the criteria of Jimenez and Moin [20].

Channel flow data are usually presented in wall units using normalized quantities defined by:

y+ =
ỹut

n
ui

+ =
ui

ut

(3.6)

with

ut=
'tw

rw

and tw=m
�(ū
(y
�

y=0

, (3.7)

Figure 21. Distributions of the three components of mean square vorticity in wall units. Lines represent the current
DNS results, and solid symbols the numerical data from KMM. — and �, vx%

2+; – – – and �, vy%
2+; –-– and 
,

vz%
2+.
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ỹ refers to a co-ordinate measured in the cross-channel direction with an origin taken at the
nearest wall, i.e. ỹ=Ly/2− �y � using the present notations. tw is the mean shear stress at the
wall; rw is the mean density at the wall. The ‘mean’ operator mentioned in the previous
definition refers to averaging in the spanwise and streamwise directions, and optionally in time.
ū(y) is the mean velocity profile. ut is called the wall shear velocity or friction velocity. The
Reynolds number based on the wall shear velocity is defined as Ret=uth/n. In the following,
the superscript + will be dedicated to normalized data in terms of wall units.

The present computation was conducted at the shear Reynolds number Ret=180, which
corresponds to a convective Reynolds Rec=3300 (based on channel half-width and axial
velocity). A mean centerline Mach number in the low-subsonic domain (M=0.2) has been
chosen. For this low Mach number flow, classical Reynolds space time averages can be used
instead of Favre mass-weighted averages. The chosen conditions will also allow quantitative
comparisons with the incompressible data of Kim et al. [7] at Rec=3300 (also noted KMM in
the following) and to Wei and Willmarth [17] at Rec=2970 (also noted WW). Kim et al.’s
channel flow data base [7] was also further explored to study the fine-scale structure of
turbulence by Antonia et al. [19]. Some of the data presented here were taken from this last
reference.

The computational grid contained 34×121×32 points in the x-, y- and z-directions. The
grid was uniform in the streamwise and spanwise directions, and the corresponding resolution
was Dx

+#33 and Dz
+#5 in order to resolve the elongated structures of turbulence. In the

cross-direction, a non-uniform mesh based on formula (2.18) was used, with constant C such
that Dy

+#1 at the wall and Dy
+#5 near the centerline. It was obtained that C=

1.120080625706.
The initial conditions of the 3D computations are obtained using a random field superim-

posed to on 2D-saturated, linearly unstable mode at a higher Reynolds number. This two
phase procedure greatly accelerates the convergence to a turbulent state. First, a 2D calcula-
tion is performed on a x–y subdomain of the 3D domain, using 34×121 points and the same
mesh spacings. This 2D calculation is initialized with a laminar parabolic profile, on which a
random velocity field (perturbation on u and 6 of amplitude 0.5% of the centerline velocity Uc)
and a deterministic perturbation (most unstable mode taken from linear stability at Rec=
10000 and for a domain of size Lx×Ly=2ph×2h, of amplitude 5%) are superimposed. It is
noted that all 2D modes are linearly stable at Rec=3300. The evolution of the linear 2D mode
is calculated at Rec=10000 and the simulation is stopped at a time before complete
saturation. The obtained field is extended in the third direction (z) and a 3D random field is
superimposed (perturbation on u, 6 and w of amplitude 0.75% of the centerline velocity Uc) in
order to generate the 3D initial conditions. Non-linear modes start to grow from this initial
condition, and a transition to a turbulent state is observed. After the transition, the 3D
calculation must be conducted for a sufficiently long period so that the values of mean
velocities and other statistics stabilize. Statistics are calculated by averaging in the x- and
z-directions and time. Here, a time sample of roughly 140 convective time units (h/Uc) was
used to get converged results.

3.3. Channel flow computations

In this section, the results obtained from the DNS presented in the previous sections will be
discussed and compared to other data (numerical and experimental). All plots in wall unit
co-ordinates correspond to an average between the lower and the upper wall profiles. This
averaging operation can be omitted for perfectly converged results, which was nearly the case
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Figure 22. Spanwise two-point correlation functions. —, R11; – – –, R22; –-–, R33.

here. Slight differences between the upper and lower wall profiles are, however, noticeable in
the results, but these differences do not exceed a few percent (e.g 3, 4 and 5% on the
u rms

+ , 6 rms
+ and w rms

+ in Figure 17).

3.3.1. Mean 6elocity. The mean velocity profile normalized by the wall shear velocity is
shown in Figure 16. The solid line shows the DNS results, and the symbols represent
experimental data from WW at their convective Reynolds number Rec=2970, which is the
closest Reynolds number to the case considered here (Rec=3300). Figure 16 also shows the
law-of-the-wall plot compiled by Coles [21,22]. Note that the intercept value of 5.5 is used in
the figure, and that the value found by the DNS results is a little overestimated. A linear
sublayer can be seen, as well as a log layer for y+\30. Results are comparable with the
experimental data of WW.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)



L. GAMET ET AL.182

3.3.2. Turbulence intensities. The mean-squared fluctuations of a given quantity q are
computed by:

q %2=q2− (q̄)2 (3.8)

and root mean square (rms) fluctuations are defined by qrms=
q %2.
RMS velocity fluctuations normalized by the friction velocity are shown in Figure 17.

Symbols represent data from other authors (see caption of Figure 17), while lines represent the
present DNS results. Globally, both qualitative and quantitative trends are recovered by the
present simulation. An underestimation of the streamwise velocity fluctuations u rms

+ is notice-
able in Figure 17. However, a good qualitative agreement is observed between the present data
and the experimental/numerical data of other authors: the peak of streamwise velocity

Figure 23. Streamwise two-point correlation functions. —, R11; – – –, R22; –-–, R33.
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Figure 24. Instantaneous snapshots of velocity fluctuations: (a) isosurfaces u %+ =92.875; (b) isosurfaces 6%+ =
91.15. Negative isosurfaces, dark-grey; positive, light-grey.

fluctuations is obtained at y+ =13.2, to be compared with the general experimentally admitted
y+ =12 value. Moreover, the data of KMM suggest a peak value at y+\12.

3.3.3. Shear stress. The total shear stress is given by (incompressible first-order
approximation):

ttot= −u %6 %¿ËÀ
Turbulent

+m
�(ū
(y
�

¿ËÀ
Linear

. (3.9)

The total shear stress written in wall units should be a linear function of the normal
co-ordinate:

t tot
+ =1−

y+

h+. (3.10)

Although there is a slight dissymmetry in the profiles, Figure 18 shows that the above relation
is satisfied. The turbulent and laminar components of t tot

+ are also plotted in Figure 18. The
turbulent shear stress is comparable with the experimental results of WW at Rec=2970.

3.3.4. Dissipation and Kolmogoro6 length scale. The homogeneous dissipation rate of
turbulent kinetic energy ō can be defined, in the most general case and in non-dimensional
variables by:
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Figure 25. Instantaneous snapshot of vorticity magnitude. Isosurface �v+ �=1.11.

ō=n
(u %i
(xj

�(u %i
(xj

+
(u %j
(xi

�
, (3.11)

where repeated indices imply summation. The velocity instantaneous fluctuations are defined
by:

u %i (x, y, z, t)=ui(x, y, z, t)−ui(y). (3.12)

In direct simulations, the dissipation ō is expected to be strongly related to high frequency
modes. Figure 19 shows the distribution of ō+ = ōn/u t

4 in wall co-ordinates. Symbols represent-
ing the numerical data of KMM are shown on the same plot. The same trend is observed
between the two curves. A local peak is observed near y+:12. Some discrepancies are,
however, noticeable at low y+. A lower resolution in the linear sublayer has been used here,
compared with the KMM simulation. This could explain the observed discrepancies on ō+,
since this quantity involves derivatives calculated on a coarser grid in the present simulation.

The Kolmogorov length scale hk= (n̄3/ō)1/4 is a measure of the characteristic size of the flow
structures, at which the viscous dissipation of turbulent kinetic energy occurs. Figure 20 shows
a plot of hk

+ in wall unit co-ordinates. Results can be compared with the numerical data of
KMM. It can be seen that hk

+ is nearly constant in the wall region and increases in the outer
region. The error between the two sets is nearly 12% near the centerline, while the data are
similar elsewhere.

Figure 26. Instantaneous snapshot of streamwise voritity fluctuations. Isosurfaces vx%
+ =90.222. (Negative, dark-

grey; positive, light-grey).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)



NUMERICAL SIMULATIONS OF COMPRESSIBLE FLOWS 185

Figure 27. Temporal spectra of pressure signals recorded along the line x0=0, z0=0. Left: pressure probes closer to
the lower wall; right: pressure probes closer to the upper wall. Notice the emergence of a particular frequency

( f=0.5c/h).

3.3.5. Vorticity distribution. The perturbation vorticity components are defined by
v %i (x, y, z, t)=vi(x, y, z, t)−vi. The three components v i%

2 of the mean square perturbation
vorticity are shown in Figure 21 in wall unit co-ordinates (v+ =vn/u t

2). In the same figure,
the numerical data from KMM are also plotted. In this figure, it is observed that the
distributions of the three components of vorticity are following the same trends as those of the
numerical data from KMM, both qualitatively and quantitatively.

3.3.6. Turbulent flow structure and 6isualizations. A rapid analysis of the detailed structure of
the computed flow field can be used to verify its validity. A more detailed analysis of flow
structures in turbulent channel flows can be found in Moin and Kim [18].

The present computation should have sufficient grid resolution for the formation of the
wall-layer streaks. The streaks are observed experimentally to have a mean spacing of
Dz

+#100. The calculation of the two-point correlation functions is a good investigating tool:

Rii(y, r1)=
u %i (x, y, z)u %i (x+r1, y, z)

ui%
2(x, y, z)

Rii(y, r3)=
u %i (x, y, z)u %i (x, y, z+r3)

ui%
2(x, y, z)

(3.13)

for i=1, 2, 3 (no summation). Here, the averaging operator refers to an average in space (x-
and z-directions) and time.

Figures 22 and 23 show respectively, the spanwise and streamwise correlation functions
plotted at four different vertical locations. In all cases, the plots show both halves of the
computational domain. The data are symmetric, which is a consequence of periodicity in those
directions. Correlations were not computed during the simulation but were post-processed and
averaged in time using only ten equally spaced ‘images’ of the flow field. This procedure seems
sufficient to give global trends and converged results.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 159–191 (1999)



L. GAMET ET AL.186

The spanwise correlation profiles show that negative minima occur for y-locations near the
wall. The observed minimum is at r3

+:50 for both R11(y, r3) and R33(y, r3), and at r3
+:25 for

R22(y, r3). The separation at which R11(y, r3) is minimum provides an estimate of the mean
separation between the high- and low-speed fluid. The mean spacing between the streaks
should be roughly twice the distance, which corresponds to experimental observations men-
tioned above. The presence of a minimum for R22(y, r3) is consistent with the existence of
streamwise vortical structures in the wall region. All these results are consistent with the
observations of Kim et al. [7].

The streamwise correlation profiles show a slow decay of R11(y, r1) for increasing r1 near the
wall. This clearly indicates that the eddies are highly elongated in the streamwise direction.
Comparisons between R11(y, r3) and R11(y, r1) show that the spanwise extent of the structures
is much smaller than their streamwise extent.

The instantaneous snapshots in Figures 24–26 show respectively, isosurfaces of velocity
fluctuations, vorticity magnitude and streamwise vorticity fluctuations. Elongated eddies in the
streamwise direction are also clearly visible on those instantaneous images.

3.3.7. Acoustics in the simulation. In the previous paragraphs, high- and low-order aerody-
namic statistics are presented. These statistics do not mention the question of acoustics in the
channel flow. This point is however, an interesting issue since, using periodic and isothermal
wall boundary conditions in the simulation, any acoustic perturbation generated will remain

Figure 28. Pressure signals analysis. Bottom: spectral energy at frequency f=0.5c/h along cross-channel lines in the
domain. Top: cross-correlations at frequency f=0.5c/h between the signal on the lower wall and the signals along
cross-channel lines in the domain, showing relative phase information. Symbols refer to four different cross-channel

lines at: 
, x0=0 and z0=0; �, x0=0 and z0=Lz/2; �, x0=Lx/2 and z0=0; �, x0=Lx/2 and z0=Lz/2.
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trapped in the computational domain. This question of acoustics has been poorly investigated
in the literature, except in the work of Coleman [23,24] on DNS of isothermal wall super-
sonic channel flow, where compressible effects are much more important than in the present
case. In the following, analysis will be based on Fourier transforms and spectral cross-cor-
relations of signals recorded in the computational domain. This will allow the extraction of
detailed information on the structure of acoustic modes in the presented simulation. For
this purpose, numerical probes are placed at well-chosen locations in the domain, along
four distinct cross-channel lines (i.e. lines in the y-direction), admitting the following projec-
tions in the x–z plane composed by the bottom wall: x0=0 and z0=0; x0=0 and z0=Lz/
2; x0=Lx/2 and z0=0; x0=Lx=/2 and z0=Lz/2.

Time-Fourier averaged spectra of the pressure signals are plotted in Figure 27. These
signals are recorded along the probe line x0=0 and z0=0 at a time near t=290h/Uc.
Energy refers to the normalized pressure spectral energy as:

Ep(f)=
��p̂(f)�

rvc2

�2

, (3.14)

where p̂(f) is the Fourier transform of a pressure signal p(t), and c is the mean speed of
sound (based on wall temperature). In Figure 27, the emergence of a particular frequency:
f=0.5c/h, is clearly observed The same conclusion holds for any other line of probes.

A further analysis of the modal shape at this particular frequency is shown in Figure
28. This analysis was conducted at a time when the peak at f=0.5c/h could be reported
(see next paragraph). The bottom of this figure shows the energy of the mode at f=0.5c/h
as a function of y. Energy is maximal on the walls and at the center of the domain,
and minimal at y=90.5h. The top part of Figure 28 shows relative phase information,
obtained through Fourier cross-correlations of signals (the reference signal being the signal
on the bottom wall). If s1(t) and s2(t) are temporal signals, and ŝ1(f) and ŝ2(f) their
Fourier transforms, the cross-correlation of these signals in Fourier space, C. 12(f), is calcu-
lated by:

C. 12(f)=
ŝ1(f)ŝ2

†(f)
�ŝ1(f)��ŝ2(f)�, (3.15)

where the † symbol designates the complex conjugate. From Figure 28, it can be seen that,
in regions situated close to the walls, the signals are in phase with respect to the lower wall
(the correlation equals +1). On the other hand, near the centerline, the pressure signals
have the opposite phases of the reference (bottom wall) signal (the correlation goes to −1).
Thus, in this modal structure, the amplitude and phase characteristics of the second acous-
tic transverse mode ca be recognized.

The same analysis can be conducted at different times in the simulation. The second
acoustic transverse mode can not be observed at the beginning of the simulation. After the
transition, the mode is amplified. The amplification factor can be roughly estimated to
a=0.00547(Uc/h) (where E( f, t)=E0( f ) exp(2at) and E( f, t) is the spectral energy at pres-
sure antipodes). It now appears clear that acoustics take energy from the mean and turbu-
lent motion. The turbulence structures (see Figures 24–26) excite the second acoustic
transverse mode. However, this acoustic mode has no effect on the statistics, since the
results shown in the previous sections are in good agreement with other incompressible
numerical and experimental data.
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4. CONCLUSION

In this paper, the development of a fourth-order (respectively third-order) compact scheme for
the approximation of first (respectively second) derivatives on non-uniform meshes is pro-
posed, by a full inclusion of metrics in the numerics of the compact scheme. The method is
briefly compared with the classical methods using the JT, showing the advantages of the FIM
method over the JT method for non-smoothly varying meshes.

An analysis of the numerical scheme is presented. A numerical analysis of truncation errors
allows the recovery of the expected order of the scheme. A Fourier analysis completed by
stability calculations in terms of both semi- and fully-discrete eigenvalue problems is also
presented. In those eigenvalue problems, the constant speed convective equation is considered
for the first derivative scheme analysis. On the other hand, the pure diffusion equation with a
constant coefficient is considered for the analysis of the second derivative scheme. These
eigenvalue computations show that the considered schemes are stable.

An application to the direct numerical simulation of compressible turbulent channel flow is
then presented. The results of this simulation are compared with both experimental and other
numerical (DNS) data in the literature. For the present DNS conditions, it is also reported that
the second acoustic transverse mode is excited by turbulence, but that it has a negligible effect
on turbulence statistics. Thus, the ability of the non-uniform mesh generalization of compact
schemes to reproduce these physical results is demonstrated.

APPENDIX A. APPROXIMATION OF DERIVATIVES

The general solution for fourth-order, first derivative scheme on non-uniform meshes, with ai

and bi parameters, is given by:

Ai=

Ã
Æ

È

hi−1hi hi+1+hi
2hi+1+hi−1hi hi+2+hi

2hi+2−hi−1hi
2ai−hi−1hi hi+1ai

−hi−1hi hi+2ai−hi−1hi hi+1bi−hi
2hi+1bi−hi−1hi+1

2 bi−2hi h i+1
2 bi−hi+1

3 bi

+hi−1hi hi+2bi+hi
2hi+2bi+2hi−1hi+1hi+2bi+4hi hi+1hi+2bi+3hi+1

2 hi+2bi

Ã
Ç

É
hi+1(hi+hi+1)(hi−1+hi+hi+1)hi+2

,

(A.1)

Bi=

Ã
Æ

È

−hi−1hi+1
2 −hi h i+1

2 −hi−1hi+1hi+2−hi hi+1hi+2−3hi−1hi
2ai−4hi−1hi hi+1ai

+hi
3ai+2hi

2hi+1ai−hi−1hi+1
2 ai+hih i+1

2 ai−2hi−1hi hi+2ai−hi−1hi+1hi+2ai

+hi
2hi+2ai+hi hi+1hi+2ai+hi−1hi+1hi+2bi+hi hi+1hi+2bi+hi+1

2 hi+2bi

Ã
Ç

É
hi−1hi(hi+hi+1)(hi+hi+1+hi+2)

,

(A.2)

Ci=

�−hi−1hi hi+1−hi
2hi+1+hi−1hi

2ai+hi−1hi hi+1ai+hi−1hi hi+1bi+hi
2hi+1bi

+hi−1hi+1
2 bi+2hi h i+1

2 bi+hi+1
3 bi

n
hi+2(hi+1+hi+2)(hi+hi+1+hi+2)(hi−1+hi+hi+1+hi+2)

,

(A.3)

Di=

�hi h i+1
2 +hi hi+1hi+2−hi

3ai−2hi
2hi+1ai−hi h i+1

2 ai−hi
2hi+2ai−hi hi+1hi+2ai

−hi hi+1hi+2bi−hi+1
2 hi+2bi

n
hi−1(hi−1+hi)(hi−1+hi+hi+1)(hi−1+hi+hi+1+hi+2)

,

(A.4)
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Ei=− (Ai+Bi+Ci+Di). (A.5)

For the first derivative, it is noticed that Ai, Bi, Ci, Di and Ei are of the order O(1/hi).
The general solution for third-order second derivative, with ai and bi parameters, is given by:

Ai=

2×Ã
Æ

È

−hi−1hi−hi
2+hi−1hi+1+2hi hi+1+hi−1hi+2+2hi hi+2+2hi−1hiai−hi

2ai

+hi−1hi+1ai−hi hi+1ai+hi−1hi+2ai−hi hi+2ai−hi−1hibi−hi
2bi

−2hi−1hi+1bi−4hi hi+1bi−3hi+1
2 bi+hi−1hi+2bi+2hi hi+2bi+3hi+1hi+2bi

Ã
Ç

É
hi+1hi+2(hi+hi+1)(hi−1+hi+hi+1)

,

(A.6)

Bi=

2×Ã
Æ

È

2hi−1hi+1+2hi hi+1−hi+1
2 +hi−1hi+2+hi hi+2−hi+1hi+2+2hi−1hi+1ai

−3hi
2ai+3hi−1hiai−4hi hi+1ai−hi+1

2 ai+hi−1hi+2ai−2hi hi+2ai−hi hi+1bi

−hi−1hi+1bi−hi+1hi+2ai−hi+1
2 bi+hi−1hi+2bi+hi hi+2bi+2hi+1hi+2bi

Ã
Ç

É
hi−1hi(hi+hi+1)(hi+hi+1+hi+2)

,

(A.7)

Ci=
2×

�hi−1hi+hi
2−hi−1hi+1−2hi hi+1−2hi−1hiai+hi

2ai−hi−1hi+1ai

+hi hi+1ai+hi−1hibi+hi
2bi+2hi−1hi+1bi+4hi hi+1bi+3hi+1

2 bi

n
hi+2(hi+1+hi+2)(hi+hi+1+hi+2)(hi−1+hi+hi+1+hi+2)

,

(A.8)

Di=
2×

�−2hi hi+1+hi+1
2 −hi hi+2+hi+1hi+2+3hi

2ai+4hi hi+1ai+hi+1
2 ai

+2hi hi+2ai+hi+1hi+2ai+hi hi+1bi+hi+1
2 bi−hi hi+2bi−2hi+1hi+2bi

n
hi−1(hi−1+hi)(hi−1+hi+hi+1)(hi−1+hi+hi+1+hi+2)

,

(A.9)

Ei= − (Ai+Bi+Ci+Di). (A.10)

For the second derivative, it is noted that Ai, Bi, Ci, Di and Ei are proportional to O(1/hi
2).

For non-periodic boundaries, the above formulae are no longer valid for points close to the
boundaries. Non-centered approximations of lower-order developed in Appendix B must be
applied instead.

APPENDIX B. BOUNDARY SCHEME FOR NON-UNIFORM MESHES

The first derivative at boundary point i=1 is calculated from Equation (2.9). Equalizing the
Taylor series coefficients up to third-order leads to a linear system of equations, from which
a, A, B and C at i=1 can be obtained:

A= −
3h2+2h3

h2(h2+h3)

B=
(h2+h3)(2h3−h2)

h2h3
2

C=
h2

2

h3
2(h2+h3)

a=
h2+h3

h3

(B.1)
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At boundary point i=2, a fourth-order matching in Equation (2.10) gives:

A= −
2h3

2(2h2+h3)
h2(h2+h3)3

B=
2(h3−h2)

h2h3

C=
2h2

2(h2+2h3)
h3(h2+h3)3 (B.2)

a=
h3

2

(h2+h3)2

b=
h2

2

(h2+h3)2

The second derivative at boundary point i=1 is calculated from Equation (2.14). Equalizing
the Taylor series coefficients up to second-order leads to a linear system of equations, from
which A, B, C and D at i=1 can be obtained:

A=
2(3h2+2h3+h4+2h3a+h4a)

h2(h2+h3)(h2+h3+h4)

B= −
2(2h2+2h3+h4−h2a+2h3a+h4a)

h2h3(h3+h4)

C=
2(2h2+h3+h4−h2a+h3a+h4a)

h3(h2+h3)h4

D= −
2(2h2+h3−h2a+h3a)
h4(h3+h4)(h2+h3+h4)

(B.3)

At boundary point i=2, a second-order matching in Equation (2.15) gives:

A=
2(2h3+h4+3h2a+2h3a+h4a−h3b+h4b)

h2(h2+h3)(h2+h3+h4)

B= −
2(2h3−h2+h4+2h2a+2h3a+h4a−h2b−h3b+h4b)

h2h3(h3+h4)

C=
2(−h2+h3+h4+2h2a+h3a+h4a−h2b−2h3b+h4b)

h3(h2+h3)h4

D=
2(h2−h3−2h2a−h3a+h2b+2h3b)

h4(h3+h4)(h2+h3+h4)

(B.4)
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Institut de Mécanique de Grenoble, France, 1995.
11. S.K. Lele, ‘Compact finite difference schemes with spectral-like resolution’, J. Comput. Phys., 103, 16–42 (1992).
12. R. Vichnevetsky and J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM,

Philadelphia, PA, 1982.
13. A.B. Cain and R.H. Bush, ‘Numerical wave propagation analysis for stretched grids’, AIAA Paper 94–0172, 1994.
14. J. Laufer, ‘Investigation of turbulent flow in a two-dimensional channel’, Tech. Rep. 1053, NACA-Rep, 1951.
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